Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(17): 12179-12191, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38628490

RESUMO

N-heterocycles are essential building blocks and scaffolds in medicinal chemistry. A Pd-catalyzed, Ru-photoredox-mediated C-H arylation is applied herein, for converting a series of functionality-inclusive (6-phenylpyridin-2-yl)pyrimidines to single arylated derivatives, using phenyldiazonium tetrafluoroborate as aryl source. This green chemistry-compliant transformation is induced by LED light. The drug-like modular substrates are constructed via combination of Biginelli multi-component condensation and Suzuki C-C cross-coupling, in order to strategically install, adjacent to the Ph-ring intended to undergo C-H arylation, a (6-pyridin-2-yl)pyrimidine that plays the role of a chelating directing moiety for the C-H arylation catalyst. The scope has been demonstrated on a series of 26 substrates, comprising diverse Ph-ring substituents and substitution patterns, as well as with 13 different aryl donors. Substrates in which the Ph-ring (arylation acceptor) was replaced by an electron-rich heteroaryl counterpart (2-/3-thiophene or -benzofuran) have also been examined and found to undergo arylation regioselectively. End-product conformations afford interesting motifs for occupying 3D chemical space, as implied by single-crystal X-ray diffraction, which has allowed the elucidation of six structures of aryl derivatives and one of an unprecedented pyrimidine-pyridine-benzofuran carbopalladated complex, believed to be a C-H activation derivative.

2.
Materials (Basel) ; 16(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570002

RESUMO

Metal-organic frameworks (MOFs) have attracted considerable interest as emerging heterogeneous catalysts for organic transformations of synthetic utility. Herein, a Lewis-acidic MOF, {[Cu3(PEIP)2(5-NH2-mBDC)(DMF)]·7DMF}∞, denoted as Cu(ΙΙ)-PEIP, has been synthesized via a one-pot process and deployed as an efficient heterogeneous catalyst for a Diels-Alder cycloaddition. Specifically, the [4 + 2] cycloaddition of 13 substituted azachalcone dienophiles with cyclopentadiene has been investigated. MOF-catalyzed reaction conditions were optimized, leading to the selection of water as the solvent, in the presence of 10% mol sodium dodecyl sulfate (SDS) to address substrate solubility. The Cu(II)-PEIP catalyst showed excellent activity under these green and mild conditions, exhibiting comparable or, in some cases, superior efficiency to a homogeneous catalyst often employed in Diels-Alder reactions, namely, Cu(OTf)2. The nature of the azachalcone substituent played a significant role in the reactivity of the dienophiles, with electron-withdrawing (EW) substituents enhancing conversion and electron-donating (ED) ones exhibiting the opposite effect. Coordinating substituents appeared to enhance the endo selectivity. Importantly, the Cu(II)-PEIP catalyst can be readily isolated from the reaction mixture and recycled up to four times without any significant reduction in conversion or selectivity.

3.
Chemistry ; 28(54): e202201497, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-35726630

RESUMO

Organometallic molecules offer some of the most promising scaffolds for interaction with G-quadruplex nucleic acids. We report the efficient synthesis of a family of organoplatinum(II) complexes, featuring a 2-([2,2'-bipyridin]-6-yl)phenyl tridentate (N∧ N∧ C) ligand, that incorporates peripheral side-chains aiming at enhancing and diversifying its interaction capabilities. These include a di-isopropyl carbamoyl amide, a morpholine ethylenamide, two enantiomeric proline imides and an oxazole. The binding affinities of the Pt-complexes were evaluated via UV-vis and fluorescence titrations, against 5 topologically-distinct DNA structures, including c-myc G-quadruplex, two telomeric (22AG) G-quadruplexes, a duplex (ds26) and a single-stranded (polyT) DNA. All compounds exhibited binding selectivity in favour of c-myc, with association constants (Ka ) in the range of 2-5×105  M-1 , lower affinity for both folds of 22AG and for ds26 and negligible affinity for polyT. Remarkable emission enhancements (up to 200-fold) upon addition of excess DNA were demonstrated by a subset of the compounds with c-myc, providing a basis for optical selectivity, since optical response to all other tested DNAs was low. A c-myc DNA-melting experiment showed significant stabilizing abilities for all compounds, with the most potent binder, the morpholine-Pt-complex, exhibiting a ΔTm >30 °C, at 1 : 5 DNA-to-ligand molar ratio. The same study implied contributions of the diverse side-chains to helix stabilization. To gain direct evidence of the nature of the interactions, mixtures of c-myc with the four most promising compounds were studied via UV Resonance Raman (UVRR) spectroscopy, which revealed end-stacking binding mode, combined with interactions of side-chains with loop nucleobase residues. Docking simulations were conducted to provide insights into the binding modes for the same four Pt-compounds, suggesting that the binding preference for two alternative orientations of the c-myc G-quadruplex thymine 'cap' ('open' vs. 'closed'), as well as the relative contributions to affinity from end-stacking and H-bonding, are highly dependent on the nature of the interacting Pt-complex side-chain.


Assuntos
Quadruplex G , Radiossensibilizantes , Amidas , DNA/química , Genes myc , Imidas , Ligantes , Morfolinas , Oxazóis , Compostos de Platina , Prolina , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética , Timina
4.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562720

RESUMO

G-quadruplexes, a family of tetraplex helical nucleic acid topologies, have emerged in recent years as novel targets, with untapped potential for anticancer research. Their potential stems from the fact that G-quadruplexes occur in functionally-important regions of the human genome, such as the telomere tandem sequences, several proto-oncogene promoters, other regulatory regions and sequences of DNA (e.g. rDNA), as well as in mRNAs encoding for proteins with roles in tumorigenesis. Modulation of G-quadruplexes, via interaction with high-affinity ligands, leads to their stabilization, with numerous observed anticancer effects. Despite the fact that only a few lead compounds for G-quadruplex modulation have progressed to clinical trials so far, recent advancements in the field now create conditions that foster further development of drug candidates. This review highlights biological processes through which G-quadruplexes can exert their anticancer effects and describes, via selected case studies, progress of the last few years on the development of efficient and drug-like G-quadruplex-targeted ligands, intended to harness the anticancer potential offered by G-quadruplexes. The review finally provides a critical discussion of perceived challenges and limitations that have previously hampered the progression of G-quadruplex-targeted lead compounds to clinical trials, concluding with an optimistic future outlook.


Assuntos
Antineoplásicos/farmacologia , Quadruplex G/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/metabolismo , Humanos , Ligantes , Proto-Oncogene Mas , Bibliotecas de Moléculas Pequenas/metabolismo
5.
Mol Pharm ; 16(10): 4260-4273, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31508966

RESUMO

The epidermal growth factor receptor (EGFR) is a key target in anticancer research, whose aberrant function in malignancies has been linked to severe irregularities in critical cellular processes, including cell cycle progression, proliferation, differentiation, and survival. EGFR mutant variants, either transmembrane or translocated to the mitochondria and/or the nucleus, often exhibit resistance to EGFR inhibitors. The ability to noninvasively image and quantify EGFR provides novel approaches in the detection, monitoring, and treatment of EGFR-related malignancies. The current study aimed to deliver a new theranostic agent that combines fluorescence imaging properties with EGFR inhibition. This was achieved via conjugation of an in-house-developed ((4-bromophenyl)amino)quinazoline inhibitor of mutant EGFR-TK, selected from a focused aminoquinazoline library, with a [Ru(bipyridine)3]2+ fluorophore. A triethyleneglycol-derived diamino linker featuring (+)-ionizable sites was employed to link the two functional moieties, affording two unprecedented Ru conjugates with 1:1 and 2:1 stoichiometry of aminoquinazoline to the Ru complex (mono-quinazoline-Ru-conjugate and bis-quinazoline-Ru-conjugate, respectively). The bis-quinazoline-Ru-conjugate, which retains an essential inhibitory activity, was found by fluorescence imaging to be effectively uptaken by Uppsala 87 malignant glioma (grade IV malignant glioma) cells. The fluorescence imaging study and a time-resolved fluorescence resonance energy transfer study indicated a specific subcellular distribution of the conjugate that coincides with that of a mitochondria-targeted dye, suggesting mitochondrial localization of the conjugate and potential association with mitochondria-translocated forms of EGFR. Mitochondrial localization was further documented by the specific concentration of the bis-quinazoline-Ru-conjugate in a mitochondrial isolation assay.


Assuntos
Neoplasias do Colo/patologia , Glioblastoma/patologia , Mitocôndrias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/química , Rutênio/química , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Extensão Extranodal , Corantes Fluorescentes , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Inibidores de Proteínas Quinases/química , Frações Subcelulares
6.
Molecules ; 22(12)2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29210998

RESUMO

Oligomeric compounds, constituted of consecutive N,O-heteroaromatic rings, introduce useful and tunable properties as alternative ligands for biomolecular recognition. In this study, we have explored a synthetic scheme relying on Van Leusen oxazole formation, in conjunction with C-H activation of the formed oxazoles and their subsequent C-C cross-coupling to 2-bromopyridines in order to assemble a library of variable-length, 'head-to-tail'-connected, pyridyl-oxazole ligands. Through investigation of the interaction of the three longer ligands (5-mer, 6-mer, 7-mer) with cancer-relevant G-quadruplex structures (human telomeric/22AG and c-Myc oncogene promoter/Myc2345-Pu22), the asymmetric pyridyl-oxazole motif has been demonstrated to be a prominent recognition element for G-quadruplexes. Fluorescence titrations reveal excellent binding affinities of the 7-mer and 6-mer for a Na⁺-induced antiparallel 22AG G-quadruplex (KD = 0.6 × 10-7 M-1 and 0.8 × 10-7 M-1, respectively), and satisfactory (albeit lower) affinities for the 22AG/K⁺ and Myc2345-Pu22/K⁺ G-quadruplexes. All ligands tested exhibit substantial selectivity for G-quadruplex versus duplex (ds26) DNA, as evidenced by competitive Förster resonance energy transfer (FRET) melting assays. Additionally, the 7-mer and 6-mer are capable of promoting a sharp morphology transition of 22AG/K⁺ G-quadruplex.


Assuntos
Quadruplex G , Ligantes , Motivos de Nucleotídeos , Dicroísmo Circular , Humanos , Estrutura Molecular , Oxazóis/química , Porfirinas/química
7.
ACS Chem Biol ; 6(12): 1382-90, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-21958214

RESUMO

Inositol phospholipids have emerged as important key players in a wide variety of cellular functions. Among the seven existing inositol phospholipids, phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P(2)) has attracted much attention in recent years due to its important role in numerous cellular signaling events and regulations, which in turn impact several human diseases. This particular lipid is recognized in the cell by specific lipid binding domains, such as the Pleckstrin-homology (PH) domain, which is also employed as a tool to monitor this important lipid. Here, we describe the synthesis and biological characterization of a small molecule that mimics the PH domain as judged by its ability to bind specifically to only PI(4,5)P(2) and effectively compete with the PH domain in vitro and in a cellular environment. The binding constant of this small molecule PH domain mimetic (PHDM) was determined to be 17.6 ± 10.1 µM, similar in potency to the PH domain. Using NIH 3T3 mouse fibroblast cells we demonstrated that this compound is cell-permeable and able to modulate PI(4,5)P(2)-dependent effects in a cellular environment such as the endocytosis of the transferrin receptor, loss of mitochondria, as well as stress fiber formation. This highly PI(4,5)P(2)-specific chemical mimetic of a PH domain not only is a powerful research tool but might also be a lead compound in future drug developments targeting PI(4,5)P(2)-dependent diseases such as Lowe syndrome.


Assuntos
Ácidos Borônicos/síntese química , Compostos de Fenilureia/síntese química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animais , Ácidos Borônicos/farmacologia , Endocitose/efeitos dos fármacos , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Células NIH 3T3 , PTEN Fosfo-Hidrolase/metabolismo , Compostos de Fenilureia/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Estrutura Terciária de Proteína/fisiologia , Transferrina/metabolismo
8.
J Biol Inorg Chem ; 16(2): 195-208, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20972690

RESUMO

The discovery of small-molecule modulators of signaling pathways is currently a particularly active area of research. We aimed at developing unprecedented metal-based activators of Akt signaling which can potentially find applications as tools for regulating glucose metabolism downstream of Akt or serve as lead structures for developing antidiabetic drugs. In this context, a highly diverse library of 11 new zinc(II) complexes with phenolic, picolinic, pyridino, and hydroxamic ligands, all containing features beneficial for medicinal purposes, was prepared and screened in an assay that detected levels of phospho-Akt in lysates from NIH3T3 cells after treatment with the compounds. The complexes featuring hydroxamic ligands were found to be the most prominent activators of Akt among the molecules prepared, with the most efficient compound acting at submicromolar concentrations. Further characterization revealed that this compound induces phosphorylation of the Akt downstream effector glycogen synthase kinase 3ß, but does not act as an inhibitor of tyrosine phosphatases or PTEN.


Assuntos
Ácidos Hidroxâmicos/química , Compostos Organometálicos/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Zinco/química , Animais , Camundongos , Modelos Biológicos , Células NIH 3T3 , Compostos Organometálicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos
9.
J Chem Biol ; 4(4): 159-65, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22368708

RESUMO

UNLABELLED: Inhibition of protein kinases in the fight against disease remains a constant challenge for medicinal chemists, who have screened multitudes of predominantly planar organic scaffolds, natural and synthetic, to identify potent-albeit not always selective-kinase inhibitors. Herein, in an effort to investigate the potential biological utility of metal-based compounds as inhibitors against the cancer-relevant targets mitogen-activated protein kinase and cyclin-dependent kinase 2, we explore various parameters in planar platinum(II) complexes with substituted phenanthroline ligands and aliphatic diamine chelate co-ligands, to identify combinations that yield promising inhibitory activity. The individual ligands' steric requirements as well as their pattern of hydrogen bond donors/acceptors appear to alter inhibitory potency when modulated. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12154-011-0059-5) contains supplementary material, which is available to authorized users.

10.
Angew Chem Int Ed Engl ; 49(24): 4020-34, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20503216

RESUMO

Guanine-rich sequences of DNA can assemble into tetrastranded structures known as G-quadruplexes. It has been suggested that these secondary DNA structures could be involved in the regulation of several key biological processes. In the human genome, guanine-rich sequences with the potential to form G-quadruplexes exist in the telomere as well as in promoter regions of certain oncogenes. The identification of these sequences as novel targets for the development of anticancer drugs has sparked great interest in the design of molecules that can interact with quadruplex DNA. While most reported quadruplex DNA binders are based on purely organic templates, numerous metal complexes have more recently been shown to interact effectively with this DNA secondary structure. This Review provides an overview of the important roles that metal complexes can play as quadruplex DNA binding molecules, highlighting the unique properties metals can confer to these molecules.


Assuntos
Complexos de Coordenação/química , Quadruplex G , Antineoplásicos/química , Clivagem do DNA , Corantes Fluorescentes/química , Compostos Macrocíclicos/química , Perileno/química , Piridinas/química
11.
J Neurosci ; 29(25): 8236-47, 2009 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-19553463

RESUMO

Aging is a risk factor for the development of adult-onset neurodegenerative diseases. Although some of the molecular pathways regulating longevity and stress resistance in lower organisms are defined (i.e., those activating the transcriptional regulators DAF-16 and HSF-1 in Caenorhabditis elegans), their relevance to mammals and disease susceptibility are unknown. We studied the signaling controlled by the mammalian homolog of DAF-16, FOXO3a, in model systems of motor neuron disease. Neuron death elicited in vitro by excitotoxic insult or the expression of mutant SOD1, mutant p150(glued), or polyQ-expanded androgen receptor was abrogated by expression of nuclear-targeted FOXO3a. We identify a compound [Psammaplysene A (PA)] that increases nuclear localization of FOXO3a in vitro and in vivo and show that PA also protects against these insults in vitro. Administration of PA to invertebrate model systems of neurodegeneration similarly blocked neuron death in a DAF-16/FOXO3a-dependent manner. These results indicate that activation of the DAF-16/FOXO3a pathway, genetically or pharmacologically, confers protection against the known causes of motor neuron diseases.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Doença dos Neurônios Motores/tratamento farmacológico , Doença dos Neurônios Motores/fisiopatologia , Neurônios Motores/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais , Tirosina/análogos & derivados , Animais , Western Blotting , Contagem de Células/métodos , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Biologia Computacional , Modelos Animais de Doenças , Drosophila , Embrião de Mamíferos , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Fluorescência , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/biossíntese , Imuno-Histoquímica , Ácido Caínico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Fármacos Neuroprotetores/administração & dosagem , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/citologia , Tirosina/administração & dosagem , Tirosina/farmacologia
12.
Bioorg Med Chem Lett ; 18(10): 3117-21, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17983747

RESUMO

The preparation of a collection of 131 small molecules, reminiscent of families of long chain N-acyl tyrosines, enamides and enol esters that have been isolated from heterologous expression of environmental DNA (eDNA) in Escherichia coli, is reported. The synthetic libraries of N-acyl tyrosines and their 3-keto counterparts were prepared via solid-phase routes, whereas the enamides and enol esters were synthesized in solution-phase.


Assuntos
Escherichia coli/metabolismo , Bibliotecas de Moléculas Pequenas/química , Tirosina/análogos & derivados , Tirosina/química , Álcoois/química , Alcenos/química , Amidas/química , Escherichia coli/genética , Ésteres/química , Estrutura Molecular
13.
Org Lett ; 8(19): 4251-4, 2006 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-16956199

RESUMO

A 28-member focused library, based on the pseudosymmetric template of the marine alkaloids psammaplysenes, was prepared from combinations of components that were, in turn, derived from 4-iodophenol.


Assuntos
Tirosina/análogos & derivados , Cromatografia Líquida , Iodobenzenos/química , Espectrometria de Massas , Tirosina/química
14.
Org Lett ; 7(19): 4091-4, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16146359

RESUMO

[reaction: see text] Two inhibitors of FOXO1a-mediated nuclear export, psammaplysenes A and B, have been synthesized by a flexible and efficient route. A common starting material, 4-iodophenol, was used to prepare both halves of these pseudosymmetric dibromotyrosine-derived metabolites.


Assuntos
Fatores de Transcrição Forkhead/antagonistas & inibidores , Fatores de Transcrição Forkhead/metabolismo , Tirosina/análogos & derivados , Transporte Ativo do Núcleo Celular , Estrutura Molecular , Tirosina/síntese química , Tirosina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...